[image: image1.png]

Dynamic Business Rules
Page 7

[image: image10.png]

Dynamic

Business Rules, Domain Tables,

& Business Objects

A new approach to Application Configuration

 and Information Modeling

[image: image11.wmf]
Prepared by

Rob Tribble

12/8/02
Table of Contents

51.
Introduction

1.1
Introduction to Business Rules
5
1.2
Introduction to Domain Tables
7
1.3
Introduction to Dynamic Business Object Model
9
1.4
Introduction to Dynamic Business Rule Tree
9
2.
Definition of Business Rules
10
2.1
Business Rule Objectives
12
2.1.1
Ease of Use
12
2.1.2
Object Encapsulation Problems
13
2.1.3
Development Productivity
15
2.1.4
Dynamic Business Environment
15
2.1.5
Maintainability and Administration
15
2.1.6
Performance and Scalability
16
2.2
Conceptual Example
17
2.2.1
Simple Case of Payment Method
20
2.2.2
Multiple Payment Methods
22
2.2.3
Complex Backorder Decisions
23
2.3
Rule Definition & Components
25
2.3.1
Definition of Rule Domains
25
2.3.2
Definition of Voters
25
2.3.3
Definition of an Object as a Voter
26
2.3.4
Definition of a Domain Table as a Voter
26
2.3.5
Definition of a “Business Rule” as a Voter
26
2.3.6
Definition of Data Objects as Voters with “Hierarchical Inheritance”
27
2.3.7
Definition of Votes
28
2.3.8
Definition of Sequencing and Relevance
28
2.3.9
Definition of Effective Dates
28
2.3.10
Rule Evaluation or Conflict Resolution Strategy
28
2.3.11
Definition of Rule Results
28
2.3.12
Administration of Rules for Rule
28
2.3.13
Definition of Domain Tables
28
2.3.14
Administration of Votes for Rules
28
2.4
Voters
28
2.4.1
Data Objects
28
2.4.2
Domain Tables
28
2.4.3
“Business Rules”
29
2.4.4
Sequencing
30
2.4.5
Required vs. Optional
30
2.4.6
Definition of Effective Dates
30
2.4.7
GUI and Usability Issues
30
2.5
Votes
30
2.5.1
Domain Tables
30
2.5.2
Single – Multiple Rows
30
2.5.3
Single – Multiple Columns
30
2.5.4
“Inheritance” Votes
30
2.5.5
Required vs. Optional
30
2.5.6
Sequencing
30
2.5.7
Definition of Effective Dates
30
2.5.8
GUI and Usability Issues
30
2.6
Rule Resolution
30
2.6.1
Intersection of Sets
30
2.6.2
Union of Sets
30
2.6.3
Last In – First Out
30
2.6.4
First In – First Out
30
2.6.5
High / Low
30
2.6.6
Democratic
30
2.6.7
N- way Matching
30
2.6.8
Yes/No Dominate Behaviors
30
2.6.9
Consensus Behaviors
31
2.6.10
If…Then…. Else Behaviors
31
2.7
Rule Engine Results
31
2.7.1
Specific Value
31
2.7.2
List of Values
31
2.7.3
Row of Values
31
2.7.4
Table of Values
31
2.7.5
Data Typing Interoperability
31
2.7.6
Sequencing
31
2.7.7
Merging
31
2.7.8
Master / Exception Administration of large complex sets of Objects
31
2.8
Interaction of Applications and Rules
32
2.8.1
Application initiated
32
2.8.2
Data Change initiated
32
2.8.3
“Cascading” Rule Evaluation
32
2.8.4
Administration initiated
32
2.8.5
Policy, and Audit trails
32
2.8.6
GUI, and Usability Issues
32
2.9
Special Conditions
32
2.9.1
Multiple Instances of the Same Class of Voter
32
2.9.2
Multiple Attribute Sources for same instance of Voter
32
2.9.3
“NULL” Voters
32
2.9.4
“NULL” Votes
32
2.9.5
“Inherited” Voters
32
2.9.6
“Inherited” Votes
32
3.
Domain Table Definition
33
3.1.1
Table Types
33
3.1.2
Ownership
33
3.1.3
Administration
33
3.1.4
GUI use
33
4.
Dynamic Business Object Model Definition
34
4.1.1
Attribute definition
34
4.1.2
Attribute value definition
34
4.1.3
Attribute value / relationship definition
34
4.1.4
Soft-Schema vs. Hard-Schema approaches
34
4.1.5
Creating New Dynamic Business Object Classes
34
4.1.6
Defining New Attributes and Values to Dynamic Business Objects
34
4.1.7
Attribute “Stickiness” and Data Flow
34
5.
Application Examples
35
5.1
End-User GUI Implications
35
5.1.1
Selection & Retention of Selected Values
35
5.1.2
Rule Evaluation Display
35
5.1.3
Changing of Selected Values and Rule Evaluation
35
5.2
Administrative Display
35
5.2.1
Rules for Rules – Update & Display
35
5.2.2
Domain Tables – Update & Display
35
5.2.3
Dynamic Objects – Update & Display
35
5.2.4
Application Panel Display based on Rules for Rules
35
5.2.5
Display of Default Values
35
5.2.6
Display of Voters & Values
35

Introduction

The purpose of this paper is to clarify the conceptual structure for the use of “Business Rules” in the development, and continuing configuration of application products. Not all of the concepts in this paper have been implemented within Netscape Commerce Expert Products. However, as the product matures, it is expected that more and more of these features will be implemented.

The concept of a “Business Rule” has many meaning to many people, and is probably a term that has been overloaded in the marketplace. In this paper, I am attempting to clarify the exact nature of a “Business Rule”, and its related components. At times I will use examples, some of which, may appear to be working examples, to clarify concepts. Other times I will be using charts & drawings, which do not conform to any intended design notation, methodology, or convention, so please do not read more into this than is present.

In general this paper will be divided into five separate sections. The introduction section with a brief overview of the concepts. The definition sections (two, three, & four) with a specific description of each logical feature or requirement. The application example section with descriptive examples of the application of the conceptual features and functions described in the first two sections.

1.1 Introduction to Business Rules

Often Times, It is more important to define what a concept is NOT related to, than what it is related to. In this case “Business Rules” are NOT:

· Related to Artificial Intelligence, “Fuzzy Logic”, or any form of logic using weighted / evaluation like search technologies.

· “Stored Procedures” or “Software Triggers” as usually found in many DBMS systems.

· Are not expressed in a syntax, or a language statement

So for the balance of this paper please do not use either of the above as a frame of reference. This is extremely important, because of the performance, stability, and ease of use issues that are so often associated with these two concepts.

“Business Rules” as defined within this paper, have many things in common with other conceptual methodologies, but as with all ideas, the details of implementation are very important. Simply stated the objective of a “Business Rule” is to be able to:

· Define a default value for a specific attribute of a specific instance of an object.

· Define a list of valid values for a specific attribute of a specific instance of an object

· Define relationships between specific instances of objects

· Define a specific attribute to a specific relationship between 2 or more specific objects.

· Define a default value for a specific attribute of a specific relationship.

· Define a list of valid values for a specific attribute of a specific relationship.

· Define the specific behavior (methods) to be used by specific objects in specific relationships.

· “Business Rules” are dynamic, and changeable using a “point & click” metaphor at run-time.
Section Three of this paper will explain, with concrete examples, how these types of conceptual behaviors might work.

Introduction to Domain Tables

Domain tables are used to define the overall set of possible values for a given attribute of an object.

· For Example: a list of the currencies in the world today. (domain = World)

The use of domain tables is quite common, by this name or any other name. The use of domain tables within the context of “Business Rules” needs to be clarified. The key conceptual difference between this paper and other methodologies has to do with the concept of ownership of the domain table, and the values of a specific instance of a table.

· For Example: a list of currencies for use by this company (domain = XYZ company)

Both of these examples, should clarify the concept of ownership and domains.

The next major conceptual point is the nature of the construction, and administration of that construction. Construction can be:

1. “Static” or defined by some external standards body

· For Example: a list of all Units of Measure can be found at the National Standards Bureau.

2. “Configured” or defined by a person for use by a specific application

· For Example: a list of the valid units of measure for a specific group of products

3. “Dynamic” or defined by the relationship between two classes of objects

· For Example: a list of “Ship-To” locations for the XYX Company

The rules for construction and administration tend to be fairly simple.

· Domain tables that are “Static” - are maintained by loading values from external sources. This may be GUI based or file import based

· Domain tables that are “Configured” – are maintained by a GUI which allows a “privileged” user to select specific values, or create new values as required to meet the business requirements of the owner of the table.

· Domain tables that are “Dynamic” - are maintained by a GUI which allows a “privileged” user to select specific values, from a list of possible values that are currently available in the existing DBMS, as required to meet the business requirements of the owner of the table.

To the degree, that “static” tables can be derived from acceptable standards bodies, the easier the exchange of attribute values will become between multiple application systems.

Introduction to Dynamic Business Object Model

Dynamic Business Objects (DBO) can be defined as extensions to existing conceptual models for schema based objects. These extensions are capable of:

· Adding additional attributes to any object.

· Defining the value of a specific attribute for a specific instance of an object.

· Defining the value for a specific attribute of a specific instance of an object when it interacts with other specific instances of objects.

· Creating new Classes of Objects, Instances of those new classes, and define relationships, and attributes, and values.

· Supporting the implementation of a standard set of methods for DBO use.

The key conceptual point is that the above extensions allow for the use of a Soft-Schema approach to the construction, and extension of an object model based on a hard-schema. The Soft-Schema approach allows:

· Developers to create new attributes for objects, test, and debug, without tedious time spent reconstructing (software build) all of the supporting environment.

· Implementers at installed sites to add attributes to already designed objects, without having to be concerned about the impact of the existing software.

· Developers and Implementers to easily develop add-on software capabilities that become release independent, and therefore conserve “investments” in the application platform.

The strategic objective of this conceptual initiative is to improve productivity of the developers and implementers. The ability to make code (methods) release independent, is extremely desirable, and would go along way to improving the overall “time” to implement.

1.2 Introduction to Dynamic Business Rule Tree
This section will describe the intrinsic relationship between rules…..

Definition of Business Rules

The understanding of what a business rule can do is fundamental to understanding the overall capabilities of an application that uses “Business Rules” as a basic design methodology. This section of this paper will attempt to explain the structure, and content of a “Business Rule”.

Think of all “Business Rules” as "answers" to specific problems that an application program needs to solve. In general, “Business Rules” do not define "new" logic, they define the appropriate action or actions to take given the context of the decision to be made.

Please consider:

· In the early years of data processing we used to have the concept of "parameters" used by an application program to specifically direct the application program how to "process" data. An example of one of these parameters might have been "run date". The "run date" parameter is then used as a basis for calculating various other dates within the context of that one execution of that program. The "run date" might be used to calculate if payments are late, or expected ship date, or etc.etc. etc.

· The next logical step was to have a list of parameters passed to the program that 'controlled" the programmatic behavior for duration of the program execution. This list of parameters could include a variety of data, sometimes called switches, fields, parameters, toggles, indicators, etc.Whatever they were called they were constant for the entire duration of that program being executed, and were only changeable across multiple executions or "batches" of data. They were "fixed' by design, and required program changes to implement new behaviors.

· The next major step was to include parametric fields into specific file formats. For Example: a customer master record may have a taxability indicator (Y/N). This would control the application of sales tax based on the value of the indicator field. The value could be chosen by customer versus chosen by batch execution of a program with a parameter and constant for all customers.

· The next major step came when we realized that data for customers and products may interact and produce different results. For example: a product record may also have a taxability indicator (Y/N) and when the product is not taxable, and the customer is taxable should result in no tax being paid. This is a simple and clear example of how specific instances off objects can interact

· The next logical step in this pattern is to recognize that many objects may interact to define the correct answer, and in ways that may not always be expected at the time a program is designed.

The “Business Rules” approach allows the designer of an application to "defer" those decisions until execution time. The application designer has the ability to:

At Design Time - define the specific behaviors or domain values available to be used - "possible" values

At Execution Time - the objects that will influence the decision, the values to be used by each "influencing" object and the method by which they can interact with each other to produce a result. All of these capabilities are available to configured by the appropriate user. The administration of each individual object becomes the "control" point for the application behavior. This gives the appropriate user the ability to implement a "Point & Click" Interface for administration of the "choices"

Business Rule Objectives

1.2.1 Ease of Use

The ease of use of the administration capability for very large and complex systems is often a critical factor in it's acceptability when being implemented. When the underlying data has very complex structure, and complex interactions, the average user views the system as unusable. However, when the system is simple, and has very broad definitions of interactions, the system is viewed as inflexible, and possibly unsuitable for a specific application.

These two opposing trends, can be addressed by the use of “Business Rules”. They simplicity of having only one place to set parametric values. And the ability to define complex interactions when required. This statement will become obvious as the document is read.

Clearly stated, the use of a "Point and Click" metaphor is the basis for the administration of values (Votes) within “Business Rules”. The following is an example of a typical GUI for selecting a payment method.

[image: image2.png]cash visa
Mastercard on Account
Amex

Figure 1 - Selection GUI Example

The GUI shown above would replace a general choice list, or drop down list many applications would use. The box on the left side represents the domain of possible values. The choice box on the right represents the list of values chosen for this specific instance of the object.

The user (appropriate to the task) that administers this instance of the object has the choice of selecting values, and sequencing of values. Those values higher on the list have "preference" over those values lower on the list.

Object Encapsulation Problems

Another basic design problem with application is the clear and concise statement of the parameters that need to be passed (API definition) to an application object. In our quest to construct reusable software objects have to be insulated from access to the outside environment except for those parameters that need to be past from the outside (calling) program to the inside (called) program. This in effect, freezes the interface API, and does not allow it to be changed at execution time without considerable effort.

The “Business Rules” approach allows for the dynamic interactions at run time.

[image: image3.png]Business Rules.

|

EEETET—
Business
Component

Legacy Access

H

Legacy
Systerns.

Figure 2 - Business Rules & Components

Please think of software components as having three basic parts.

· the definition of data, parameters, relationships, schema

· the definition of methods, or behaviors to apply to that data,

· the control logic (if..then..else) to be used to decide which methods to be used.

The problem comes when the object no longer meets the requirements of the environment that it was designed to work within. The designers and implementers have to re-construct the software component, which takes time, and can be very disruptive.

The “Business Rules” approach moves a large part of the "If…then….else" logic outside of the software component, and therefore removes the requirement to re-build the component everytime there is a change in the decision making logic. It also important to note, that “Business Rules” cannot create new methods or supply new types of data to these methods without the use of external calls or API's.
Development Productivity

The need for a standardized method for the maintenance of Domain Tables, Vales, and “Business Rules” is obvious. The use of “Business Rules” within a development environment should result in simplicity of design of the administration function.

The administration functions should become generalized and useful across all of the domain tables, rules, and dynamic business objects. In general if a programmer needs to make a decision in a method, the answer should come from the rule engine, and be stored as a “Business Rule”. This should apply to "config" files, and "INI" files.

The presence of a common approach makes the testing and documentation of the results easier, and more maintainable. The developers will be more productive, and users will experience a more predictable set of logic.

1.2.2 Dynamic Business Environment

The problem in developing applications is the nature of the " real world ". We attempt to define applications into set patterns, we attempt to "normalize" data and methods where possible. The problem comes when the "real world changes" and we have to change the application code.

Please accept the fact that change is expected, and therefore our software must be able to deal with change dynamically. “Business Rules”, as a concept, allows the appropriate user to define "how" an interaction between specific objects might effect the outcome of the execution of a software component.

· For example: The XYZ company does not allow split shipments today, next month it's "Best" customer wants you to ship whatever you have as soon as possible. This means the XYZ company needs to support split shipments next month, and only for that "Best" customer. The month after that, the "Best" customer calls up and says that is only true when you are shipping to "Ohio". And a month later they call again and say that this is true only when shipping via "FedEx".

With “Business Rules” these are easy changes to make, and can be made dynamically, without changing or rebuilding the software components.

1.2.3 Maintainability and Administration

The administration of “Business Rules” is very important for the proper execution. The application designer needs to identify all of the decision points in an application. These decision points are separate instances of rules.

For each rule, the rule administration function need to store the application using the rule, the name of the rule, the objects involved in the interactions, and the method for resolving the conflicts between the interacting objects. This data is commonly called the "rule for rules". Once set, this "rules for rules" database is rarely changed, and should only be changed by the appropriate user, capable of understanding the impact that these types of changes may produce.

Each rule, may have one to many classes of interacting objects. Each instance of these objects may have a data value (vote) for a specific rule. It is important to note, that the administrative effort by most users will be focused on maintaining these values. The example above is an example of "data for rules".

1.2.4 Performance and Scalability

Often in context of “Business Rules” discussions, performance is a key concern. The important design note here is that rules have a finite logic path per rule, and that the logic path does not change with the size of the rule set. The primary reason for this is that any one specific “Business Rule” is discrete in nature, and the execution of a specific set of rule, is independent of how many rules may be in the system.

It is important to note that “Business Rules” should be "cached" and that the "cache" should be flushed when administration of "rules for rules" or "rules for data" is performed. The "cache" should be populated with values and "null" values by instance of object, and rule. The "cache" should have values introduced when a specific instance of an object is first used. (Demand Cache)

Conceptual Example

The following is a conceptual example that should clarify a lot of the concepts in a more concrete example. In this example, when a shopping cart is created, all of the fields should have default values that are based on the preferences, and conform to the business rules derived from the interaction of a buyer (Rob), selling company (XYZ Company), and the company of the buyer (ABC Company).

[image: image4.png]Payment Method:
Customer P.O. #

Ship Via

Brefered Delivery Date (mm/dd/yy):

Total Goods and Services:
Adjustments

Net Total

Shipping:

Taxable Amount

Tax

Tot,

Cormpany Default =]new...

Company Default =

oz717/9

287.60
0.00
287.60
6.70
294.30
22.07
316.37

Recalculate

Figure 3 - Shopping Cart

Figure 3 is an example of some of the default values that might be found in a shopping cart. These default values in a application based on “Business Rules” will be based on the interaction of the many specific instances of buyer, selling company, and buying company.

The typical application will have an administration function where the preferences for a specific instance of an object are maintained. Figure 4 is an example of an administration GUI panel for a specific company. This figure shows a specific set of choices that are acceptable payment methods for this company.

[image: image5.png]Buyerdpert
v Rules
b Rules for Rules
* Domain Tables
» Domains

Feople
User Groups
Organization Units
Warkilow
Bill-To Locations
Ship-To Locations
Shippers
Order Processing
- Freight Terms

* PREPAD

* NONE

* Customer
 Shipping Methods

* Fed-ExOvernight ||

* UPS Nextday
- Wil call
 Payment Methods
b Mastercard
- visa
* onAccount
- Amex
+ cash
 Payment Terms
b 210E0M

> nanes =
[l D

Basic | Financial

Warklow

Picing | Procossha | Shooig

TGO

Transmit Order
Order Split Allowed?
SplitOrders Based on

Order Processing
other 3

Yes 3

Based on Ship fromiShip to Locations o

Payment Methods
Payment Method Model
Payment Terms

Payment Terms Model

fem

Standard Payment Method 9
2/10Net30, 2/10E0M

Use Standard Implementation

Figure 4 - Administration GUI

When a filed of this nature is maintained, most application systems would choose to use a typical dropdown or choice list. In a “Business Rules” based system, the administration GUI uses a “selection” type of GUI as found in Figure 5.

[image: image6.png]cash visa
Mastercard on Account
Amex

Figure 5 - Payment Method Selection

The “selection” GUI used with “Business Rules” has some interesting features. First the left hand box will contain a set of values that are “possible”, and the right hand box represents a list of “selected” values. The sequence of these values implies preference within the set. In this example “Visa” is preferred over “Amex”. However all values on this list are acceptable forms of payment.

The “selection” gui may have many forms based upon the type of results being expected. The results may be a simple yes/no, or a single value, or a row of values or a table of values. All of these types of results may have variant gui's from the list of values gui shown above. A later section in this document will provide more detail.

Simple Case of Payment Method

This example shows a person (rob) who has just created a shopping cart. The shopping cart (order business object) has a set of fields that require values. The example shows the relationship between the business object (order) and the related objects (person, buying company, and selling company). [image: image7.wmf]Rob

User-ID

Seller Company Business Object

Pay Method

Visa

Master Card

Credit

<None>

Buyer Business Object

Pay Method

Visa

Rob Tribble

W.W.Grainger

Buyer Company Business Object

Pay Method

Visa

Master Card

American Express

<None>

Ford Motor Company

Rule

Engine

Order Business Object

Pay Method

Visa

Figure 6 - Simple Default Value

The sequence of logical flow starts with the:

· Order Business Object requesting a set of values for the payment method field

· The Rule Resolution Engine recognizing the related objects (person, buying-company, selling company), also referred to as voters
· The Rule Resolution Engine finding the preferred values for "Payment Method" in each related object

· The Rule Resolution Engine "resolving" the conflict between the "preferences" or votes.

In this specific rule, The rule engine uses a rule resolution strategy of intersection of sets to create a result that is then used as a default value by the order object.

Multiple Payment Methods

This Example, shows the behavior of the rule resolution engine, when there are multiple values that are acceptable to all of the voters that are related to this order object.

[image: image8.wmf]Rob

User-ID

Seller Company Business Object

Pay Method

American Express

Master Card

Credit

Visa

Buyer Business Object

Pay Method

Visa

Rob Tribble

W.W.Grainger

Buyer Company Business Object

Pay Method

Visa

American Express

Ford Motor Company

Rule

Engine

Order Business Object

Pay Method

American Express

American Express

Visa

Figure 7 - Multiple Choices

In this example, using the behavior described from the previous example, the solution set produced by the rule resolution engine includes two entries (Amex & Visa). Both values are acceptable to all of the related objects. The sequence of the solution set results in "Amex" being the default value, and both values will appear in the drop down choice list on the gui. The user may select either value.

The sequence of the solution set, is a function of the sequence of the "preferred" values or vote of the 1st voter. In this example, if the selling company organized the list with "Visa" first, and "Amex" later, the solution set would have been reversed.

1.2.5 Complex Backorder Decisions

This example will show a more complex behavior. In this case the order object has been asked to "add" a line item to an order. In the process of "adding" that line item the "order object" has performed an inventory availability check, and has determined that inventory is not available. The order object then has to make a decision to create a backorder. The specific rule being evaluated here is "whether or not to track a backorder"

[image: image9.wmf]Rob

User-ID

Seller Company Business Object

Back Order

Not Allowed

Product Business Object

Back Order

Not Allowed

Christmas Lights

W.W.Grainger

Rule

Engine

Order Business Object

Back Order

Option

Not Allowed

Back Order

Buying Company Business Object

Ford Motor Company

Allowed

1 Case

$ 100.00

Min. Qty

Min. Value

Figure 8 - Complex Decisions

In this case, Rob is buying 100,000 Christmas tree lights on 12/1/97. And the inventory is not available.

The related objects (voters) are selling company, buying company, and product

The selling company, as a rule, is not interested in "tracking" backorders, and has set it's preference to "No"

The buying company, is a special case, happens to be a very large customer, that requires "exceptional" service, and therefore the preference has been set to "yes". But notice that certain limits have been expressed, to control the size of the backorders.

The product, is also a special case, This specific product is not to be backordered after 11/15/97.

The proper solution in this example is determined by using a rule resolution method of "LIFO" or last-in-first-out. In which case the correct answer is "no".

Now from a business sense, this is exactly the correct answer. Why ? because by the time the selling company had filled the backorder, the selling season for the product would have been over, and the selling company may not accept delivery, or return the product. Or "No Sale"

Rule Definition & Components

The purpose of this section is to explain the concepts involved in the construction of a rule. “Business Rules” are NOT statements, or any specific syntax. “Business Rules” are to be defined using an administration function which stores the require information into a database that is formatted in a specific way, and used by the rule resolution engine.

The rule resolution engine, uses the "rule for rules" database to "control" its behavior when it is "called" by an application business object.

1.2.6 Definition of Rule Domains

“Business Rules” belong to applications. A set of rules may belong to a "selling" system, or a "buying" system. Applications can NOT share the same rules. They may share very similar rules, but NOT the same instance of a rule.

For Example: A "selling" application may have a payment method rule, where the preferences of the selling company may dominate the solution set (see previous examples). A "buying" application may have the same rule, however the buying company preferences may dominate the solution set.

When “Business Rules” are used in a multiple seller, or buyer environment. Rules belong to the domain of the dominate company as defined by the nature of the packaged application (eg. Seller Companies dominate in a Seller application)

For Example: Two "selling" companies are using a common installation of the software. In this case a separate set of “Business Rules” must be provided for each selling company or domain.

1.2.7 Definition of Voters

Voters can be data objects, domain tables, or the results of other rules. For Example: a voter represents a specific instance of a object that is related to the object (eg. order) being operated on by the calling program.

The designer has the ability to define which:

· The owner or domain of the objects to be used (eg. Seller Company)

· classes of objects, domain tables, or other “rules” that can vote, to derive a value (Vote) from,

· the sequence that they can vote,

· and the owner to that class of object. (eg. Selling Company)

Note, that “Business Rules” can derive values or votes from other “Business Rules”. This allows for the construction of complex combinations of evaluation logic.
At execution time, the Calling Object (eg. A specific instance of an Order Object) will define the specific instances of the objects (Voters) to be used in “evaluation” of a “Business Rule”.
1.2.8 Definition of an Object as a Voter

For Example: The shopping cart program (calling program) is currently working on a order object(A123), which is related to a specific instance of a seller object (XYZ Company), a specific buyer object (ABC Company), and a specific instance of a person (Rob). When a solution is "requested" from the rule engine, the calling program has only to identify itself (Application = "seller") and identify the target object (Order - A123). Based on this set of identification the rule engine can "look-up" the rule, and based upon the rule, and the target object "look-up" the related votes (preferences) of the related instances (Rob, XYZ, and ABC).

Visio Picture

1.2.9 Definition of a Domain Table as a Voter

1.2.10 Definition of a “Business Rule” as a Voter

Not all Voters are objects, they can also be a specific “Business Rule”. Rules results can be expressed as a “row of values”, when this happens one of the other values in the row, can become a vote in a rule evaluation. They ability to reference another “Business Rule” allows for the construction of very complex logical decisions.

For Example: The “Business Rule” (Freight Method) has three voters

· Selling Company,

· Buying Company

· Payment Method (Rule)

In this example, the results of this rule are a function of the values or (results) of other rules. The Freight Method “Will Call” may have a Payment Method of “Cash, and On Invoice”. Where as the Freight Method “FedEx” may have Payment Methods of “Cash, Credit Card, and On Invoice”.

The Payment Method rule may be completely independent in construction, and may use a LIFO approach to selecting a result set from various voters.
Picture of structure

1.2.11 Definition of Data Objects as Voters with “Hierarchical Inheritance”

For Example: A rule (eg. Can View XXX) has three voters (Company, Organization, and User Group) . The “Business Rule” should allow a single “NO” to dominate the voting results

The “Business Rule” should allow a single “Yes” to dominate the voting results. The voter class “User Group” represents “all” of the user groups a specific user may belong to. The voter class “Organization” represents the specific organization a specific user group may belong to. The voter class “Company” represents the “owner” of the user object.

Picture of Hierachical Dtructure

1.2.12 Definition of Votes

1.2.13 Definition of Sequencing and Relevance

1.2.14 Definition of Effective Dates

1.2.15 Rule Evaluation or Conflict Resolution Strategy

1.2.16 Definition of Rule Results

1.2.17 Administration of Rules for Rule

1.2.18 Definition of Domain Tables

1.2.19 Administration of Votes for Rules

1.3 Voters

1.3.1 Data Objects

Example Nomenclature : OO(II). CC(II)

Where II = Instance of Object

 OO = Owner

 CC = Object Class

1.3.2 Domain Tables

Example Nomenclature : OO(II). TT ((FF,EE,XX),(FF,EE,XX))

Where II = Instance of Object

 OO = Owner

 TT = Domain Table

 FF = Field Name (in table)

 EE = Evaluator (eg. =, > , <, NE)

 XX = Specific Value (eg. ABC)

1.3.3 “Business Rules”

Example Nomenclature : DD(II). RR

Where II = Instance of a Domain Owner

 DD = Domain Owner (eg. Buyer, Seller)

 RR = Business Rule

1.3.4 Sequencing

1.3.5 Required vs. Optional

1.3.6 Definition of Effective Dates

1.3.7 GUI and Usability Issues

1.4 Votes

1.4.1 Domain Tables

1.4.2 Single – Multiple Rows

1.4.3 Single – Multiple Columns

1.4.4 “Inheritance” Votes

1.4.5 Required vs. Optional

1.4.6 Sequencing

1.4.7 Definition of Effective Dates

1.4.8 GUI and Usability Issues

1.5 Rule Resolution

1.5.1 Intersection of Sets

1.5.2 Union of Sets

1.5.3 Last In – First Out

1.5.4 First In – First Out

1.5.5 High / Low

1.5.6 Democratic

1.5.7 N- way Matching

1.5.8 Yes/No Dominate Behaviors

1.5.9 Consensus Behaviors

1.5.10 If…Then…. Else Behaviors

1.6 Rule Engine Results

1.6.1 Specific Value

1.6.2 List of Values

1.6.3 Row of Values

1.6.4 Table of Values

1.6.5 Data Typing Interoperability

1.6.6 Sequencing

1.6.7 Merging

1.6.8 Master / Exception Administration of large complex sets of Objects

1.7 Interaction of Applications and Rules

1.7.1 Application initiated

1.7.2 Data Change initiated

1.7.3 “Cascading” Rule Evaluation

1.7.4 Administration initiated

1.7.5 Policy, and Audit trails

1.7.6 GUI, and Usability Issues

1.8 Special Conditions

1.8.1 Multiple Instances of the Same Class of Voter

1.8.2 Multiple Attribute Sources for same instance of Voter

1.8.3 “NULL” Voters

1.8.4 “NULL” Votes

1.8.5 “Inherited” Voters

1.8.6 “Inherited” Votes

Domain Table Definition

1.8.7 Table Types

1.8.8 Ownership

1.8.9 Administration

1.8.10 GUI use

Dynamic Business Object Model Definition

1.8.11 Attribute definition

1.8.12 Attribute value definition

1.8.13 Attribute value / relationship definition

1.8.14 Soft-Schema vs. Hard-Schema approaches

1.8.15 Creating New Dynamic Business Object Classes

1.8.16 Defining New Attributes and Values to Dynamic Business Objects

1.8.17 Attribute “Stickiness” and Data Flow

Application Examples

1.9 End-User GUI Implications

1.9.1 Selection & Retention of Selected Values

1.9.2 Rule Evaluation Display

1.9.3 Changing of Selected Values and Rule Evaluation

1.10 Administrative Display

1.10.1 Rules for Rules – Update & Display

1.10.2 Domain Tables – Update & Display

1.10.3 Dynamic Objects – Update & Display

1.10.4 Application Panel Display based on Rules for Rules

1.10.5 Display of Default Values

1.10.6 Display of Voters & Values

This document contains Proprietary Information and is not to be distributed or copied without prior written consent. This Document was prepared by Rob Tribble on 12/8/02

